
Exercise on the Lambert-Beer law Exercise for week 6 (14.10.2024)

Let's consider a cuvette which can contain $3~\text{cm}^3$ of liquid (optical path length: 1 cm). It is filled with a 2 mL solution containing an unknown concentration of absorbing molecules (molecular weight: 350~g/mol). The measured transmission at the wavelength λ_1 is 70 %. After the addition of 0.75 mL of a solution containing 200 µg of the same absorber, the transmission of the final solution at the wavelength λ_2 is 60 %. We know that $\epsilon_{\lambda 1} = 8.45 \times 10^5~\text{cm}^2/\text{mol}$.

What was the initial concentration of absorbing molecules? What is its molar extinction coefficient $\varepsilon_{\lambda 2}$?

